Keterbatasan Teknik Serakah
Ini tidak cocok untuk masalah Greedy yang memerlukan solusi untuk setiap submasalah seperti pengurutan.
Dalam soal latihan algoritma Greedy seperti itu, metode Greedy bisa saja salah; bahkan dalam kasus terburuk akan menghasilkan solusi yang tidak optimal.
Oleh karena itu, kerugian dari algoritma serakah adalah tidak mengetahui apa yang ada di depan keadaan serakah saat ini.
Berikut ini gambaran kelemahan metode Greedy:
Dalam pemindaian serakah yang ditampilkan di sini sebagai pohon (nilai lebih tinggi, keserakahan lebih tinggi), suatu algoritma menyatakan pada nilai: 40, kemungkinan akan mengambil 29 sebagai nilai berikutnya. Selanjutnya, pencariannya berakhir pada 12. Nilainya adalah 41.
Namun, jika algoritme mengambil jalur yang kurang optimal atau mengadopsi strategi penaklukan. kemudian 25 akan diikuti oleh 40, dan peningkatan biaya keseluruhan akan menjadi 65, yang dinilai 24 poin lebih tinggi sebagai keputusan suboptimal.
Kelebihan dan Kelemahan Utama Algoritma Greedy
��ࡱ� > �� � ���� ���� � � � � ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �� �( � � � � J ; �D � � F i l e L a i n � l a n j u t 1 . p p t �F � � K n a p S a c k � k n a p s a c k . p p t x �V � �" A l g o r i t m a K r u s k a l � k r u s k a l . p p t x �V � �" A l g o r i t m a K r u s k a l � k r u s k a l . p p t x �V � �" A l g o r i t m a K r u s k a l � k r u s k a l . p p t x �J � ! � A l g o r i t m a P r i m � p r i m . p p t x �J � $ � A l g o r i t m a P r i m � p r i m . p p t x �F � ' � D i j k s t r a � d j i k s t r a . p p t x �D � , � F i l e L a i n � l a n j u t 1 . p p t �F � / � K n a p S a c k � k n a p s a c k . p p t x �V � 1 �" A l g o r i t m a K r u s k a l � k r u s k a l . p p t x �J � 7 � A l g o r i t m a P r i m � p r i m . p p t x �F � ; � D i j k s t r a � d j i k s t r a . p p t x �� / � 0 � �� �D A r i a l H�� x�b��� X�� ��� ��� l�� `�� u�b`�� � �D C a l i b r i x�b��� X�� ��� ��� l�� `�� u�b`�� � " �D W i n g d i n g s ��� X�� ��� ��� l�� `�� u�b`�� � 0 �D S y m b o l g s ��� X�� ��� ��� l�� `�� u�b`�� � @ �D C o u r i e r N e w X�� ��� ��� l�� `�� u�b`�� � 1P �D T i m e s N e w R o m a n ��� ��� l�� `�� u�b`�� � � � @ � . � @ �n ��? " d � d @ ��� �� �� @@ `` �� H �@ �� l a � �0 � � �� � � �� � @ � � � � � �* ���� ʚ;��� ʚ; <
Contoh Serakah Algorithms
Kebanyakan algoritma jaringan menggunakan pendekatan serakah. Berikut adalah daftar beberapa contoh algoritma Greedy:
Singkatnya, artikel ini mendefinisikan paradigma greedy, menunjukkan bagaimana optimisasi greedy dan rekursi dapat membantu Anda memperoleh solusi terbaik hingga titik tertentu. Algoritma greedy banyak digunakan untuk memecahkan masalah dalam banyak bahasa sebagai algoritma greedy. Python, C, C#, PHP, Java, dll. Pemilihan aktivitas contoh algoritma Greedy digambarkan sebagai masalah strategis yang dapat mencapai throughput maksimum dengan menggunakan pendekatan serakah. Pada akhirnya, kerugian dari penggunaan pendekatan serakah dijelaskan.
Mengapa menggunakan Pendekatan Serakah?
Berikut adalah alasan untuk menggunakan pendekatan serakah:
Pengertian Algoritma Greedy
Algoritma Greedy adalah pendekatan dalam pemrograman yang memecahkan persoalan optimasi dengan cara yang tampaknya rakus. Pendekatan ini berfokus pada pengambilan keputusan sekarang dengan harapan bahwa setiap langkah akan membawa kita lebih dekat ke solusi akhir yang optimal.
Dalam konteks greedy, kita selalu memilih opsi yang paling menguntungkan saat ini tanpa mempertimbangkan konsekuensi di masa depan. Ini mirip dengan mengambil sejumlah uang tunai yang tersedia dari mesin ATM tanpa memikirkan bagaimana pengeluaran itu akan memengaruhi saldo akhir .
Apa itu Algoritma Greedy?
In Algoritma serakah sekumpulan sumber daya dibagi secara rekursif berdasarkan ketersediaan sumber daya maksimum dan langsung pada tahap eksekusi tertentu.
Untuk menyelesaikan masalah berdasarkan pendekatan serakah, ada dua tahap
Tahapan-tahapan ini dibahas secara paralel dalam tutorial algoritma Greedy ini, pada kursus pembagian array.
Untuk memahami pendekatan serakah, Anda perlu memiliki pengetahuan tentang rekursi dan peralihan konteks. Ini membantu Anda memahami cara melacak kode. Anda dapat mendefinisikan paradigma serakah berdasarkan pernyataan Anda sendiri yang perlu dan cukup.
Ada dua kondisi yang mendefinisikan paradigma serakah.
Dengan melanjutkan teori, mari kita uraikan sejarah yang terkait dengan pendekatan pencarian Greedy.
Contoh Program Algoritma Greedy
Berikut adalah contoh sederhana implementasi algoritma greedy dalam bahasa Python untuk menyelesaikan masalah Fractional Knapsack:
Hey kawan blogger, sudah dibilang kan saya itu kalo udah sekali nulis maunya nulis terus. hehe :p
Kali ini saya mau berbagi tentang program C++ yang menggunakan Algoritma Greedy.
Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi. Prinsip greedy: “take what you can get now!”. Algoritma greedy membentuk solusi langkah per langkah (step by step). Pada setiap langkah, terdapat banyak pilihan yang perlu dieksplorasi. Oleh karena itu, pada setiap langkah harus dibuat keputusan yang terbaik dalam menentukan pilihan. Pada setiap langkah, kita membuat pilihan optimum lokal (local optimum) dengan harapan bahwa langkah sisanya mengarah ke solusi optimum global (global optimum). Dengan kata lain algoritma greedy melibatkan pencarian sebuah himpunan bagian, S, dari himpunan kandidat, C; yang dalam hal ini, S harus memenuhi beberapa kriteria yang ditentukan, yaitu menyatakan suatu solusi dan S dioptimisasi oleh fungsi obyektif.
Nah di bawah ini merupakan contoh coding programnya:
void sort(int[],int);
int x[size],i,n,uang,hasil[size];
printf("\nbanyaknya jenis koin: ");
printf("\nmasukkan jenis koin (Rp): \n");
printf("\njenis koin yang tersedia (Rp): \n");
printf("%d \t",x[i]); }
printf("\n\nmasukkan nilai yang ingin dipecah: Rp ");
printf("\n\nhasil algoritma greedynya adalah: \n");
printf("\akoin Rp %d",x[i]);
printf("-an sebanyak: %d keping",hasil[i]);
void sort(int a[],int siz) {
for(pass=1;pass<=siz-1;pass++) {
for(j=0;j<=siz-2;j++) {
Output dari program di atas adalah sebagai berikut:
Logika dari coding program di atas adalah sebagai berikut:
peryataan conio.h. adalah library pada C yang digunakan untuk mengkoneksikan pernyataan clrscr() dengan program yang kita buat. Tanpa menggunakan library ini, kita tidak bisa menggunakan fungsi prototype seperti: gotoxy(), clrscr(), clreol().
Dalam c++ jika kita menginginkan penggunaan input dan output, atau bisa diartikan sebagai standard library yang berfungsi untuk I/O package maksudnya digunakan jika kita ingin pada program kita menggunakan fungsi standard input atau output bisa dikatakan seperti portable input/output package. Tanpa menggunakan library ini, kita tidak bisa menggunakan perintah-perintah input/output pada program kita.
Library di atas berguna untuk menentukan size dari inputan banyak datanya adalah 99, artinya jika data lebih banyak dari 99, maka program akan berhenti mengeksekusi.
Pernyataan diatas adalah main procedure (prosedur utama dalam program ini). Pada program ini, program utama berbentuk prosedur untuk mengurutkan data yang kita input, disini yang akan diurutkan adalah variable masukan dari int[] dan int.
Pernyataan di atas digunakan sebagai badan program. Fungsinya sama seperti public.static.void.main(String args[]) { pada bahasa pemrograman java.
Pernyataan di atas digunakan untuk membersihkan layar ketika program dieksekusi.
Pernyataan di atas digunakan untuk mendefinisikan variable yang akan digunakan dalam programnya. Tanda kurung siku [ ] menandakan variable tersebut bertipe array.
Pernyataan printf di atas digunakan untuk mencetak tulisan yang ada diantara tanda kutip “ ”. \n digunakan untuk member jeda (enter) pada saat program dieksekusi.
Pernyataan scanf digunakan untuk menyimpan angka yang kita input ketika program dieksekusi. Disini terdapat %d yang mengartikan data inputan akan ditampilkan dalam bentuk decimal, dan &n mengartikan data inputan akan disimpan sementara pada variable n.
Pernyataan for di atas digunakan sebagai kondisi perulangan pada program, sedangkan pernyataan hasil[i]=uang/x[i]; digunakan sebegai rumus perhitungan untuk mendapatkan kombinasi koin apa saja yang digunakan untuk menukarkan koin yang ingin kita tukarkan dengan koin yang tersedia, lalu pernyataan uang=uang%x[i]; digunakan untuk menentukan berapa banyaknya kombinasi koin dalam pertukaran koinnya.
berguna unutk membaca sebuah karakter, bisa juga membaca tombol, getch() tidak akan menampilkan karakter dari tombol yang ditekan. Sebuah getch() bisa pula digunakan untuk menunggu sembarang tombol ditekan. Pada keadaan seperti ini, hasil dari fungsi ini tidak perlu diletakkan ke variable, atau dipascal dapat diartikan sebagai readln
angka 0 ini akan dikembalikan kepada sistem operasi. Nilai ini digunakan oleh sistem operasi untuk disimpan di variabel ERRORLEVEL pada MS DOS, dimana 0 artinya ‘sukses’.
Blok pernyataan di atas digunakan untuk mengurutkan angka yang telah kita input pada saat program dieksekusi.
Sekian yang dapat saya bagian mengenai Algoritma Greedy dan contoh programnya. Semoga bermanfaat bagi yang membacanya. Akhir kata, terima kasih dan ...
[email protected] https://teknokrat.ac.id/en/ https://spada.teknokrat.ac.id/Read less
Algoritma greedy adalah algoritma apa pun yang mengikuti metode heuristik dalam pemecahan masalah untuk membuat pilihan optimal secara lokal di setiap tahap.[1] Dalam banyak permasalahan, strategi greedy tidak menghasilkan solusi optimal, tetapi suatu heuristik greedy dapat menghasilkan solusi optimal lokal yang mendekati solusi optimal global dalam jangka waktu yang wajar.
Misalnya, strategi greedy untuk masalah penjual keliling (yang memiliki kompleksitas komputasi tinggi) adalah heuristik berikut: "Pada setiap langkah perjalanan, kunjungi kota terdekat yang belum dikunjungi." Heuristik ini tidak bertujuan untuk menemukan solusi terbaik, tetapi ia berakhir dalam sejumlah langkah yang wajar. Yang mana menemukan solusi optimal untuk masalah yang kompleks biasanya memerlukan banyak langkah yang tidak masuk akal. Dalam optimasi matematis, algoritma greedy secara optimal dapat menyelesaikan masalah kombinatorial yang memiliki sifat matroid dan memberikan hampiran faktor konstan untuk masalah optimasi dengan struktur submodular.
Algoritme greedy menghasilkan solusi yang baik pada beberapa masalah matematis, tetapi tidak pada masalah lainnya. Sebagian besar masalah yang algoritma greedy kerjakan memiliki dua properti:
Dimulai dari A, algoritma greedy yang mencoba menemukan nilai maksimum dengan mengikuti kemiringan terbesar akan menemukan maksimum lokal di "m", tanpa menyadari maksimum global di "M".
Untuk mencapai nilai terbesar, pada setiap langkah, algoritma greedy akan memilih apa yang tampak sebagai pilihan langsung yang optimal, sehingga ia akan memilih 12 dan bukannya 3 pada langkah kedua, dan tidak akan mencapai solusi terbaik, yaitu 99.
Algoritme greedy gagal menghasilkan solusi optimal untuk banyak masalah lain dan bahkan mungkin menghasilkan solusi unik yang paling buruk . Salah satu contohnya adalah masalah travelling salesman yang disebutkan di atas: untuk setiap jumlah kota, terdapat penetapan jarak antar kota dimana heuristik tetangga terdekat menghasilkan tur terburuk yang mungkin terjadi.[3] Untuk kemungkinan contoh lainnya, lihat efek cakrawala.
Algoritme greedy dapat dikategorikan sebagai algoritma yang 'berpandangan sempit', dan juga 'tidak dapat dipulihkan'. Algoritma ini hanya ideal untuk permasalahan yang memiliki 'substruktur optimal'. Meskipun demikian, untuk banyak masalah sederhana, algoritma yang paling cocok adalah algoritma greedy. Namun, penting untuk dicatat bahwa algoritma greedy dapat digunakan sebagai algoritma seleksi untuk memprioritaskan pilihan dalam pencarian, atau algoritma branch-and-bound. Ada beberapa variasi pada algoritma serakah:
Algoritma greedy memiliki sejarah panjang dalam studi optimasi kombinatorial dan ilmu komputer teoretis. Heuristik serakah diketahui memberikan hasil yang kurang optimal pada banyak masalah,[4] sehingga pertanyaan yang wajar adalah:
Sejumlah besar literatur menjawab pertanyaan-pertanyaan ini untuk kelas masalah umum, seperti matroid, serta untuk masalah khusus, seperti set cover.
Matroid adalah struktur matematika yang menggeneralisasi konsep independensi linier dari ruang vektor ke himpunan sembarang. Jika suatu masalah optimasi mempunyai struktur matroid, maka algoritma greedy yang sesuai akan dapat menyelesaikannya secara optimal.[5]
Sebuah fungsi f {\displaystyle f} didefinisikan pada himpunan bagian dari suatu himpunan Ω {\displaystyle \Omega } disebut submodular, jika untuk setiap S , T ⊆ Ω {\displaystyle S,T\subseteq \Omega } kita mempunyai f ( S ) + f ( T ) ≥ f ( S ∪ T ) + f ( S ∩ T ) {\displaystyle f(S)+f(T)\geq f(S\cup T)+f(S\cap T)} .
Misalkan seseorang ingin mencari sebuah himpunan S {\displaystyle S} yang memaksimalkan f {\displaystyle f} . Algoritma greedy, yang membangun satu himpunan S {\displaystyle S} dengan menambahkan elemen secara bertahap yang meningkatkan f {\displaystyle f} paling banyak pada setiap langkah, menghasilkan keluaran sebuah himpunan yang paling sedikit ( 1 − 1 / e ) max X ⊆ Ω f ( X ) {\displaystyle (1-1/e)\max _{X\subseteq \Omega }f(X)} .[6] Artinya, keserakahan bermain dalam faktor konstan ( 1 − 1 / e ) ≈ 0.63 {\displaystyle (1-1/e)\approx 0.63} sama baiknya dengan solusi optimal.
Jaminan serupa dapat dibuktikan ketika kendala tambahan, seperti batasan kardinalitas, [7] diterapkan pada keluaran. Meskipun sering kali diperlukan sedikit variasi pada algoritma greedy. Lihat[8] untuk ikhtisarnya.
Masalah lain yang mana algoritma greedy memberikan jaminan yang kuat, tetapi bukan solusi optimal, termasuk
Banyak dari permasalahan ini memiliki batas bawah yang sesuai, yaitu algoritma greedy tidak berkinerja lebih baik daripada jaminan dalam kasus terburuk.
Algoritme greedy biasanya (tetapi tidak selalu) gagal menemukan solusi optimal secara global karena algoritma tersebut biasanya tidak beroperasi secara mendalam pada semua data. Algoritma jenis ini dapat membuat komitmen pada pilihan-pilihan tertentu terlalu dini, sehingga mencegah mereka untuk menemukan solusi terbaik secara keseluruhan nantinya. Misalnya, semua algoritma pewarnaan serakah yang diketahui untuk masalah pewarnaan graf dan semua masalah NP-lengkap lainnya tidak secara konsisten menemukan solusi optimal. Namun, algoritma jenis ini berguna karena mereka cepat berpikir dan sering memberikan hampiran yang baik secara optimal.
Jika algoritma greedy dapat dibuktikan menghasilkan optimal global untuk kelas masalah tertentu, biasanya algoritma ini menjadi metode pilihan karena lebih cepat dibandingkan metode optimasi lain seperti pemrograman dinamis. Contoh algoritma greedy tersebut adalah algoritma Kruskal dan algoritma Prim untuk mencari pohon rentang minimum serta algoritma untuk mencari pohon Huffman optimal.
Algoritmq greedy juga muncul di perutean jaringan. Dengan menggunakan routing serakah, sebuah pesan diteruskan ke node tetangga yang “paling dekat” dengan tujuan. Gagasan tentang lokasi sebuah node (dan karenanya "kedekatan") dapat ditentukan oleh lokasi fisiknya, seperti dalam perutean geografis yang digunakan oleh jaringan ad hoc . Lokasi mungkin juga merupakan konstruksi buatan seperti dalam perutean dunia kecil dan tabel hash terdistribusi.
Strategi dan Keputusan yang Serakah
Logika dalam bentuknya yang paling sederhana diringkas menjadi “serakah” atau “tidak serakah”. Pernyataan-pernyataan ini ditentukan oleh pendekatan yang diambil untuk memajukan setiap tahap algoritma.
Misalnya, algoritma Djikstra menggunakan strategi greedy bertahap yang mengidentifikasi host di Internet dengan menghitung fungsi biaya. Nilai yang dikembalikan oleh fungsi biaya menentukan apakah jalur berikutnya adalah “serakah” atau “tidak serakah”.
Singkatnya, suatu algoritma akan berhenti menjadi serakah jika pada tahap mana pun ia mengambil langkah yang tidak serakah secara lokal. Masalah-masalah Greedy berhenti tanpa adanya ruang lingkup keserakahan lebih lanjut.
Sejarah Serakah Algorithms
Berikut adalah petunjuk penting dari algoritma serakah: